首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   155篇
  国内免费   2篇
  2021年   22篇
  2020年   13篇
  2019年   13篇
  2018年   13篇
  2017年   25篇
  2016年   24篇
  2015年   49篇
  2014年   49篇
  2013年   85篇
  2012年   92篇
  2011年   97篇
  2010年   41篇
  2009年   34篇
  2008年   44篇
  2007年   50篇
  2006年   55篇
  2005年   50篇
  2004年   56篇
  2003年   44篇
  2002年   55篇
  2001年   47篇
  2000年   39篇
  1999年   34篇
  1998年   13篇
  1996年   17篇
  1995年   17篇
  1994年   17篇
  1992年   35篇
  1991年   39篇
  1990年   35篇
  1989年   31篇
  1988年   36篇
  1987年   28篇
  1986年   17篇
  1985年   26篇
  1984年   34篇
  1983年   33篇
  1982年   27篇
  1981年   20篇
  1980年   13篇
  1979年   22篇
  1978年   19篇
  1977年   32篇
  1976年   22篇
  1974年   27篇
  1973年   21篇
  1972年   33篇
  1971年   13篇
  1970年   17篇
  1969年   16篇
排序方式: 共有1921条查询结果,搜索用时 46 毫秒
101.
Oscillations in cytosolic-free Ca2+ concentration ([Ca2+]i) have been proposed to encode information that controls stomatal closure. [Ca2+]i oscillations with a period near 10 min were previously shown to be optimal for stomatal closure in Arabidopsis (Arabidopsis thaliana), but the studies offered no insight into their origins or mechanisms of encoding to validate a role in signaling. We have used a proven systems modeling platform to investigate these [Ca2+]i oscillations and analyze their origins in guard cell homeostasis and membrane transport. The model faithfully reproduced differences in stomatal closure as a function of oscillation frequency with an optimum period near 10 min under standard conditions. Analysis showed that this optimum was one of a range of frequencies that accelerated closure, each arising from a balance of transport and the prevailing ion gradients across the plasma membrane and tonoplast. These interactions emerge from the experimentally derived kinetics encoded in the model for each of the relevant transporters, without the need of any additional signaling component. The resulting frequencies are of sufficient duration to permit substantial changes in [Ca2+]i and, with the accompanying oscillations in voltage, drive the K+ and anion efflux for stomatal closure. Thus, the frequency optima arise from emergent interactions of transport across the membrane system of the guard cell. Rather than encoding information for ion flux, these oscillations are a by-product of the transport activities that determine stomatal aperture.Stomata in the leaf epidermis are the main pathway both for CO2 entry for photosynthesis and for foliar water loss by transpiration. Guard cells surround the stomatal pore and regulate the aperture, balancing the often conflicting demands for CO2 and water conservation. Guard cells open and close the pore by expanding and contracting through the uptake and loss, respectively, of osmotic solutes, notably of K+, Cl, and malate2− (Mal2−; Pandey et al., 2007; Kim et al., 2010; Roelfsema and Hedrich, 2010; Lawson and Blatt, 2014). These transport processes comprise the final effectors of a regulatory network that coordinates transport across the plasma membrane and tonoplast, and maintains the homeostasis of the guard cell. A number of well-defined signals—including light, CO2, drought and the water stress hormone abscisic acid (ABA)—act on this network, altering transport, solute content, turgor and cell volume, and ultimately stomatal aperture.Much research has focused on stomatal closure, underscoring both Ca2+-independent and Ca2+-dependent signaling. Of the latter, elevated cytosolic-free Ca2+ concentration ([Ca2+]i) inactivates inward-rectifying K+ channels (IK,in) to prevent K+ uptake and activates Cl (anion) channels (ICl) at the plasma membrane to depolarize the membrane and engage K+ efflux through outward-rectifying K+ channels (IK,out; Keller et al., 1989; Blatt et al., 1990; Thiel et al., 1992; Lemtiri-Chlieh and MacRobbie, 1994). ABA, and most likely CO2 (Kim et al., 2010), elevate [Ca2+]i by facilitating Ca2+ entry at the plasma membrane to trigger Ca2+ release from endomembrane stores, a process often described as Ca2+-induced Ca2+ release (Grabov and Blatt, 1998, 1999). The hormone promotes Ca2+ influx by activating Ca2+ channels (ICa) at the plasma membrane, even in isolated membrane patches (Hamilton et al., 2000, 2001), which is linked to reactive oxygen species (Kwak et al., 2003; Wang et al., 2013). In parallel, cADP-ribose and nitric oxide promote endomembrane Ca2+ release and [Ca2+]i elevation (Leckie et al., 1998; Neill et al., 2002; Garcia-Mata et al., 2003; Blatt et al., 2007). Best estimates indicate that endomembrane release accounts for more than 95% of the Ca2+ entering the cytosol to raise [Ca2+]i (Chen et al., 2012; Wang et al., 2012).One feature of stomatal response to ABA, and indeed to a range of stimuli both hormonal as well as external, is its capacity for oscillations both in membrane voltage and [Ca2+]i. Guard cell [Ca2+]i at rest is typically around 100 to 200 nm, as it is in virtually all living cells. In response to ABA, [Ca2+]i can rise above 1 μm—and locally, most likely above 10 μm—often in cyclic transients of tens of seconds to several minutes’ duration in association with oscillations in voltage and stomatal closure (Gradmann et al., 1993; McAinsh et al., 1995; Webb et al., 1996; Grabov and Blatt, 1998, 1999; Staxen et al., 1999; Allen et al., 2001). In principle, cycling in voltage and [Ca2+]i arises as closure is accelerated with a controlled release of K+, Cl, and Mal2− from the guard cell and is subject to extracellular ion concentrations (Gradmann et al., 1993; Chen et al., 2012). However, it has been proposed that these, and similar oscillations in a variety of plant cell models, serve as physiological signals in their own right (McAinsh et al., 1995; Ehrhardt et al., 1996; Taylor et al., 1996). In support of such a signaling role, experiments designed to impose [Ca2+]i (and voltage) oscillations in guard cells have yielded an optimal frequency for closure with a period near 10 min (Allen et al., 2001). Nonetheless, the studies offer no mechanistic explanation for this optimum that could validate a causal role in signaling, and none has been forthcoming since. Here we address questions of how such optimal frequencies in [Ca2+]i oscillation arise and their relevance for stomatal closure, using quantitative systems analysis of guard cell transport and homeostasis. Our findings indicate that oscillations in voltage and [Ca2+]i, and their optima associated with stomatal closure, are most simply explained as emerging from the interactions between ion transporters that drive stomatal closure. Thus, we conclude that these oscillations do not control, but are a by-product of the transport that determines stomatal aperture.  相似文献   
102.

Background

During inflammation, leukocytes are captured by the selectin family of adhesion receptors lining blood vessels to facilitate exit from the bloodstream. E-selectin is upregulated on stimulated endothelial cells and binds to several ligands on the surface of leukocytes. Selectin:ligand interactions are mediated in part by the interaction between the lectin domain and Sialyl-Lewis x (sLex), a tetrasaccharide common to selectin ligands. There is a high degree of homology between selectins of various species: about 72 and 60 % in the lectin and EGF domains, respectively. In this study, molecular dynamics, docking, and steered molecular dynamics simulations were used to compare the binding and dissociation mechanisms of sLex with mouse and human E-selectin. First, a mouse E-selectin homology model was generated using the human E-selectin crystal structure as a template.

Results

Mouse E-selectin was found to have a greater interdomain angle, which has been previously shown to correlate with stronger binding among selectins. sLex was docked onto human and mouse E-selectin, and the mouse complex was found to have a higher free energy of binding and a lower dissociation constant, suggesting stronger binding. The mouse complex had higher flexibility in a few key residues. Finally, steered molecular dynamics was used to dissociate the complexes at force loading rates of 2000–5000 pm/ps2. The mouse complex took longer to dissociate at every force loading rate and the difference was statistically significant at 3000 pm/ps2. When sLex-coated microspheres were perfused through microtubes coated with human or mouse E-selectin, the particles rolled more slowly on mouse E-selectin.

Conclusions

Both molecular dynamics simulations and microsphere adhesion experiments show that mouse E-selectin protein binds more strongly to sialyl Lewis x ligand than human E-selectin. This difference was explained by a greater interdomain angle for mouse E-selectin, and greater flexibility in key residues. Future work could introduce similar amino acid substitutions into the human E-selectin sequence to further modulate adhesion behavior.
  相似文献   
103.

Background

The incidence of outpatient visits for skin and soft tissue infections (SSTIs) has substantially increased over the last decade. The emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has made the management of S. aureus SSTIs complex and challenging. The objective of this study was to identify risk factors contributing to treatment failures associated with community-associated S. aureus skin and soft tissue infections SSTIs.

Methods

This was a prospective, observational study among 14 primary care clinics within the South Texas Ambulatory Research Network. The primary outcome was treatment failure within 90 days of the initial visit. Univariate associations between the explanatory variables and treatment failure were examined. A generalized linear mixed-effect model was developed to identify independent risk factors associated with treatment failure.

Results

Overall, 21% (22/106) patients with S. aureus SSTIs experienced treatment failure. The occurrence of treatment failure was similar among patients with methicillin-resistant S. aureus and those with methicillin-susceptible S. aureus SSTIs (19 vs. 24%; p = 0.70). Independent predictors of treatment failure among cases with S. aureus SSTIs was a duration of infection of ≥7 days prior to initial visit [aOR, 6.02 (95% CI 1.74–19.61)] and a lesion diameter size ≥5 cm [5.25 (1.58–17.20)].

Conclusions

Predictors for treatment failure included a duration of infection for ≥7 days prior to the initial visit and a wound diameter of ≥5 cm. A heightened awareness of these risk factors could help direct targeted interventions in high-risk populations.
  相似文献   
104.
Fire has a varied influence on plant and animal species through direct (e.g. fire‐induced mortality) and indirect (e.g. modification of habitat) effects. Our understanding of the influence of fire regime on invertebrates and their response to fire‐induced modifications to habitat is poor. We aimed to determine the response of a beetle family (Coleoptera: Cerambycidae) to varying fire treatments and hypothesised that the abundance of cerambycid beetles is influenced by fire frequency due to modifications in habitat associated with the fire treatments. Arthropods were sampled across 3 months in annually and triennially burnt areas (treatments starting in 1952 and 1973 respectively), an area unburnt since 1946, and a former unburnt treatment, burnt by wildfire in 2006. Eleven different cerambycid taxa were collected using flight intercept panel traps, dominated by three species (Ipomoria tillides, Adrium sp. and Bethelium signiferum) which made up 99% of individuals collected. Over the sampling period the long unburnt treatment had significantly lower species richness than the triennial and wildfire treatments. Cerambycid abundance was significantly higher in the triennially burnt treatment than in all other fire treatments. Ipomoria tillides was more abundant in both frequently burnt treatments, Adrium sp. was more common in triennially burnt areas, whereas B. signiferum, was more common in the wildfire affected treatment. Some, but not all, cerambycid beetles were more common in areas with a more open understorey (i.e. resulting from frequent burning), and lower tree basal area, as this likely influences their ability to fly easily between food sources. Cerambycid abundance was positively related to the volume of coarse woody debris and healthy tree crowns. Cerambycid beetles were clearly influenced by historic fire regime, suggesting that changes in fire regime can potentially have a profound influence on arthropod assemblages, and subsequent influences on ecosystem processes, which are currently poorly understood.  相似文献   
105.
Invasive animals depend on finding a balanced nutritional intake to colonize, survive, and reproduce in new environments. This can be especially challenging during situations of fluctuating cold temperatures and food scarcity, but phenotypic plasticity may offer an adaptive advantage during these periods. We examined how lifespan, fecundity, pre‐oviposition periods, and body nutrient contents were affected by dietary protein and carbohydrate (P:C) ratios at variable low temperatures in two morphs (winter morphs WM and summer morphs SM) of an invasive fly, Drosophila suzukii. The experimental conditions simulated early spring after overwintering and autumn, crucial periods for survival. At lower temperatures, post‐overwintering WM lived longer on carbohydrate‐only diets and had higher fecundity on low‐protein diets, but there was no difference in lifespan or fecundity among diets for SM. As temperatures increased, low‐protein diets resulted in higher fecundity without compromising lifespan, while high‐protein diets reduced lifespan and fecundity for both WM and SM. Both SM and WM receiving high‐protein diets had lower sugar, lipid, and glycogen (but similar protein) body contents compared to flies receiving low‐protein and carbohydrate‐only diets. This suggests that flies spend energy excreting excess dietary protein, thereby affecting lifespan and fecundity. Despite having to recover from nutrient depletion after an overwintering period, WM exhibited longer lifespan and higher fecundity than SM in favorable diets and temperatures. WM exposed to favorable low‐protein diet had higher body sugar, lipid, and protein body contents than SM, which is possibly linked to better performance. Although protein is essential for oogenesis, WM and SM flies receiving low‐protein diets did not have shorter pre‐oviposition periods compared to flies on carbohydrate‐only diets. Finding adequate carbohydrate sources to compensate protein intake is essential for the successful persistence of D. suzukii WM and SM populations during suboptimal temperatures.  相似文献   
106.
107.
108.
Interest in the characterisation of O-mannosyl glycan structures has been stimulated following the identification of mannitol-terminating oligosaccharides among the chains released from mammalian proteins in nervous and muscle tissues, and by the discovery of a putative human O-mannosyl transferase. Several mass spectrometry methods have been applied to structure elucidation particularly when low amounts of oligosaccharide are available for analysis. However, when sufficient amounts are available, a combination of through-bond homo- and heteronuclear, and of through-space homonuclear NMR experiments permit the complete identification of these oligosaccharide sequences. We describe here the assignment of 1H and 13C NMR chemical shifts from such experiments for four mannitol-terminating oligosaccharide alditols, GlcNAcbeta-(1-->2)Manol, Galbeta-(1-->4)GlcNAcbeta-(1-->2)Manol, Galbeta-(1-->4)[Fucalpha-(1-->3)]GlcNAcbeta-(1-->2)Manol and NeuAcalpha-(2-->3)Galbeta-(1-->4)GlcNAcbeta-(1-->2)Manol, that were released from brain glycopeptides by alkaline borohydride treatment.  相似文献   
109.
BACKGROUND: Infiltrating syringomatous adenoma is a rare tumor of the breast that can radiologically mimic invasive duct carcinoma. Detailed fine needle aspiration cytology and needle core biopsy findings on this lesion have not been previously described. CASE: The clinical, radiologic and pathologic findings of an infiltrating syringomatous adenoma of the breast in a 71-year-old female who presented with a subareolar lump are described. The cytology of the tumor was characterized by a combination of a background of plump, fibroblastoid cells and cohesive sheets of bland epithelial cells. Histologically the tumor showed infiltrating, duct-like structures with squamous metaplasia and a desmoplastic stroma. CONCLUSION: Fine needle aspiration cytology and needle core biopsy can distinguish infiltrating syringomatous adenoma from malignant disease of the breast.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号